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When DC electric fields are applied to a thin liquid film, the interface may become
unstable and form a series of pillars. In this paper, we apply lubrication theory to
examine the possibility of using AC electric fields to exert further control over the
size and shape of the pillars. For perfect dielectric films, linear stability analysis
shows that the influence of an AC field can be understood by considering an effective
DC field. For leaky dielectric films, Floquet theory is applied to carry out the
linear stability analysis, and it reveals that high frequencies may be used to inhibit
the accumulation of interfacial free charge, leading to a lowering of growth rates
and wavenumbers. Nonlinear simulations confirm the results of the linear stability
analysis while also uncovering additional mechanisms for tuning overall pillar height
and width. The results presented here may be of interest for the controlled creation
of surface topographical features in applications such as patterned coatings and
microelectronics.

1. Introduction
Thin polymer films are ubiquitous in modern technologies, ranging from coatings

(Assender, Bliznyuk & Porfyrakis 2002; Harrison et al. 2004) to plastic electronics
(DeAro et al. 1997; Nabetani et al. 2001) to biomaterials (Curtis & Wilkinson 1997;
Ranucci & Moghe 2001; Conti et al. 2002; Tsai et al. 2004). While perfectly flat
coatings may be desirable in some applications, other uses require the creation of
regular surface patterns (Assender et al. 2002). Controlling the surface topography of
thin polymer films becomes more difficult as the films become thinner and the desired
topography becomes smaller.

In the late 1990s, Chou and co-workers (Chou & Zhuang 1999; Chou, Zhuang &
Guo 1999) discovered that thin polymer films may form pillars when subjected to a
vertical electric field. In this process, known as lithographically induced self-assembly
(LISA), a polymer melt is cast on a silicon substrate and sandwiched underneath a top
mask, leaving a small air gap between the polymer and the mask. When the polymer
is heated above its glass transition temperature, an electric field arises between the
substrate and the mask, and the interface between the air and polymer film deforms
into an array of pillars. This electric field is created by induced charges between the
polymer and the mask. These features can be locked in by then cooling to below
the glass transition temperature, yielding a tightly packed, regular array of glassy
polymer pillars. Initial experiments by Chou & Zhuang (1999) were able to generate

† Email address for correspondence: kumar@cems.umn.edu



256 S. A. Roberts and S. Kumar

pillars with diameters of 1 μm and a pillar height-to-width ratio of 0.5. These pillars
could serve as topographical features for the previously mentioned applications.

Only after the experiments of Chou and co-workers did researchers focus on
controlling these patterns using externally applied electric fields. Experiments using
external electric fields were first performed by Schäffer et al. (2000, 2001) and Lin et al.
(2001, 2002), who found that the application of an external electric field enhances the
instability, leading to the formation of well-defined arrays of pillars. Smaller feature
sizes were also achieved, with pillar diameters nearing 100 nm (Schäffer et al. 2001).
Replacing the air layer with a liquid (Lin et al. 2001) decreases the interfacial tension,
leading to a smaller pillar spacing and faster growth. Additionally, pillars may be
formed into ordered gratings or concentric rings by using a coarsely patterned design
on the mask, leading to features with 50 nm line widths (Lei et al. 2003; Deshpande
et al. 2004). Further experiments have extended these results to a trilayer geometry,
where two polymer layers are coated on the substrate rather than one (Morariu et al.
2003; Leach et al. 2005; Bandyopadhyay & Sharma 2007). This has led to even more
novel structures such as hollow pillars (Dickey et al. 2006, 2007; Voicu, Harkema &
Steiner 2006; Voicu et al. 2007; Lee et al. 2006b; delCampo et al. 2007).

Many researchers have sought to understand the above phenomena through
mathematical modelling. Describing the polymer layer as a perfect dielectric material,
Schäffer et al. (2001) and Lin et al. (2001) used long-wave linear stability analyses to
predict how the fastest-growing wavelength depends on the film thickness and viscosity
ratio. This wavelength directly correlates to the pillar spacings and widths. To improve
this analysis, Pease & Russel (2002) used the leaky dielectric model, which allows for
free charge at polymer interfaces. This study showed that the presence of even a very
small amount of charge at the interface has a strong destabilizing influence, leading
to smaller wavelengths and larger growth rates. To improve previous analyses, which
used the lubrication approximation, Pease & Russel (2003) presented a generalized
linear stability analysis that relaxed this approximation. They showed that as surface
tension is decreased and the electric field is increased, which are the conditions needed
to form the smallest pillars, the lubrication approximation fails to correctly predict
pillar features. Shankar & Sharma (2004) later extended the lubrication analysis
to allow the gap fluid to also be a polymer film, highlighting the importance of the
viscosity and conductivity ratios in determining the pattern wavelength. More recently,
Pease & Russel (2006) summarized how the distribution of interfacial charges and
the tangential stresses they create have a profound impact on the pillar structure of
this system.

Whereas linear stability analyses are restricted to small-amplitude perturbations,
nonlinear simulations can be used to study the pillar growth process beyond this
regime. Wu & Chou (2003) and Craster & Matar (2005) used one-dimensional
nonlinear simulations under the lubrication approximation to investigate the growth
rate and pillar-spacing characteristics of perfect dielectric (Wu & Chou 2003) and
leaky dielectric (Craster & Matar 2005) fluids. Their results confirmed growth
rate and wavelength trends uncovered through prior linear stability analyses.
Thaokar & Kumaran (2005) used a weakly nonlinear analysis to show that the
interfacial instability is subcritical for nearly all parameter values and used a
boundary-element technique to study systems where the unstable wavelength is of the
same order of magnitude as the initial film thickness. Two-dimensional lubrication-
approximation-based simulations have also been performed, yielding insight into how
various nonlinear interactions and mask shapes influence the patterns observed (Wu,
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Pease & Russel 2005; Verma et al. 2005). Pillar configurations are consistent with
those seen in experiments. Wu & Russel (2005) also studied the dynamics of the pillar
formation process with simulations, showing how pillar formation begins at the edge
of mask patterns and propagates inwards. Alternatively, Kim & Lu (2006) used a
phase-field model to conduct three-dimensional simulations of the dynamics of this
growth.

The instability generated by a DC electrostatic field is similar to that of the
Rayleigh–Taylor problem, where gravitational forces can overcome the stabilizing
effect of surface tension to destabilize a flat fluid interface. However, vertically
oscillating a container of liquid with an effective gravity g − a cos(ωt) can cause an
instability to occur even if the mean gravity itself is stabilizing and a <g (Benjamin &
Ursell 1954), the so-called Faraday instability (Faraday 1831). The frequency and
amplitude of oscillation can be modified to exhibit fine control over the patterns
formed by the Faraday instability (Edwards & Fauve 1994; Kumar & Bajaj 1995;
Topaz, Porter & Silber 2004). Because of the similarity between the Rayleigh–Taylor
problem, where gravity drives the instability, and DC electrohydrodynamics (EHD),
where the electric field is destabilizing, one might expect that there would be an
analogue to the Faraday instability using AC EHD. This connection has been studied
as far back as in the 1960s (Devitt & Melcher 1965; Reynolds 1965; Briskman &
Shaidurov 1968; Yih 1968). Both Briskman & Shaidurov (1968) and Yih (1968) used
stability analyses of inviscid fluids to obtain a Mathieu equation for the interfacial
height, allowing calculation of the critical electric field needed to destabilize a liquid
interface. Robinson et al. (2000, 2001, 2002) also studied how water confined in a
channel and subjected to a perpendicular AC electric field can form regular projections
at the water–air interface that resemble a standing wave. The properties of the AC
field can be used to manipulate the behaviour of these projections, which is well
described by a Mathieu equation similar to that of Yih (1968). For these instabilities,
liquid inertia plays a key role, whereas for instabilities in thin films, liquid inertia is
usually neglected. We also note that the use of AC fields to destabilize fluid jets has
been studied both theoretically (González et al. 1989; González, Ramos & Castellanos
1997, 1999; González, Garcia & Castellanos 2003) and experimentally (Sato 1984;
Yeo et al. 2004; Lee et al. 2006a), and it has been found that AC fields may be used
to create smaller droplets, which is of interest for ink-jet printing. However, no studies
have looked at how AC fields may be used to control thin-film pattern formation.

To summarize, DC electrostatic fields can be used to create topographical patterns
on thin polymer films. Tangential stresses have been shown to play a key role in
accurately modelling this phenomenon. These stresses are due to the presence of
free charge at the polymer interface and are modelled by the leaky dielectric model.
In studies of related systems such as jets and free water surfaces, AC electrostatic
fields have been used to create instabilities not seen with DC fields and to exert
further control over the behaviour of the instabilities that do exist under DC fields.
Because of these successes, we believe that AC electric fields may be useful in
controlling interfacial instabilities in thin liquid films. Therefore, we present in this
work a theoretical study of interfacial instabilities in thin perfect dielectric and leaky
dielectric films using linear stability analysis and nonlinear simulations. In § 2, we
present a derivation of the theoretical model appropriate for this study. Results for
perfect dielectric fluids are presented in § 3 and those for leaky dielectric fluids in § 4.
Some additional effects due to time-varying DC fields are presented in § 5. The overall
effect of AC and DC fields on EHD patterning is summarized in § 6.
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Figure 1. Schematic of problem geometry. Coordinates are set such that the x-direction is
horizontal, the z-direction vertical, z = 0 is located at the initially flat interface between the
two fluids and z = h(x, t) is the current interface location.

2. Model
In this work, we consider a two-dimensional model of a fluid film on top of a

liquid film sandwiched between two solid, impermeable, and conducting substrates of
infinite horizontal extent, as illustrated in figure 1. We refer to the top substrate as the
mask. The immiscible fluids are incompressible, Newtonian and are described by the
leaky dielectric model (Taylor & McEwan 1965; Melcher & Warren 1966; Melcher &
Smith 1969; Saville 1997). The top layer (i = 1) is located at h(x, t) <z <βH , and
the lower layer (i = 2) is at −H <z <h(x, t). Each layer has a constant viscosity μi ,
density ρi , dielectric constant εi and conductivity σi . Interfacial tension γ balances
the electrostatic forces, which are due to a potential ψ =V (t), maintained at the
bottom substrate z = −H . We note that while some physical properties, such as
the dielectric constant, may in general be frequency dependent (Russel, Saville &
Schowalter 1989), the time scales explored in this study are well outside the region
where these frequency-dependencies occur.

2.1. Governing equations

In the development of this model, we exploit the naturally small aspect ratios which
are present, permitting the use of lubrication theory. While we recognize that Pease &
Russel (2003, 2004) showed that the lubrication approximation is not valid in some
situations for DC fields, we utilize it in order to more easily understand the physics
at work when AC fields are used. For a detailed derivation of the leaky dielectric
model, see Saville (1997).

The electrostatics in both fluids (i = 1, 2) are modelled by the Laplace equation for
the electrostatic potential

∇2ψi = 0, (2.1)

where the electric field is Ei = −∇ψi . This description of the potential is completed
by four boundary conditions. The top mask is electrically grounded and the bottom
substrate is maintained at a set potential

ψ1 = 0 at z = βH, (2.2)

ψ2 = V (t) at z = −H. (2.3)

At the interface between the two fluids, the interfacial charge density, q(x, t), is equal
to the jump in the normal component of the electric field

q(x, t) = ‖−εiε0∇ψi‖ · n at z = h(x, t), (2.4)
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where ε0 is the permittivity of free space. A tangential balance of the electric field
leads to equality of the potentials at the interface

ψ1 = ψ2 at z = h(x, t). (2.5)

In (2.4), the jump operator denotes subtraction of the quantity evaluated in layer 2
from that evaluated in layer 1, ‖(· · ·)i‖ = (· · ·)1 − (· · ·)2. We denote the normal vector
pointing upwards (into layer 1) as n, and t is the associated tangent vector.

Hydrodynamics in both layers are governed by the creeping flow equations

∇ · vi = 0, (2.6)

∇ · Ti = 0, (2.7)

where vi is the velocity field in the fluid. The total stress tensor, Ti , is given by the
sum of the isotropic pressure, Newtonian viscous stress, and electrical Maxwell stress
tensors, the latter of which is given by

Mi = εiε0[Ei Ei − 1
2
(Ei · Ei) δ], (2.8)

where δ is the identity tensor. Since the divergence of the Maxwell stress tensor is
zero in the bulk of the fluid, (2.7) can be written as

−∇pi + μi∇2vi = 0. (2.9)

Fluid velocities satisfy no-slip and no-penetration at the substrates

v1 = 0 at z = βH, (2.10)

v2 = 0 at z = −H, (2.11)

with appropriate continuity of velocity and stress conditions at the interface, z =
h(x, t)

‖vi · n‖ = 0, (2.12)

‖vi · t‖ = 0, (2.13)

‖n · Ti · n‖ = γ κ, (2.14)

‖n · Ti · t‖ = 0. (2.15)

Here, κ = [(δ − nn) · ∇] · n is the interfacial curvature.
Additionally, one needs to specify evolution equations for the interfacial height and

charge. These equations are provided through the kinematic boundary condition

∂h

∂t
= vz − vx

∂h

∂x
, (2.16)

and interfacial charge balance

∂q

∂t
+ vx

∂q

∂x
= qn · (n · ∇) v + ‖σiEi · n‖, (2.17)

where all terms in both equations are evaluated at the interface z = h(x, t).

2.2. Scalings

Dimensionless variables (all denoted by an overbar) are defined as follows:

(z, h) = H (z̄, h̄), x = Lx̄, t = T t̄,

(ψi, V (t)) = χ(ψ̄i, V̄ (t)), q = Qq̄, pi = P p̄i,

vz = Uv̄z, vx = Wv̄x.

(2.18)
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In these equations, H is the thickness of the lower fluid layer and the time scale is
defined by the vertical velocity component T = H/U . Balancing terms in the mass
conservation equation (2.6) gives the horizontal velocity scale W = UL/H in terms
of the vertical velocity scale, while balancing terms in the interfacial charge condition
(2.4) gives the charge scale Q = ε0χ/H . The pressure scale is obtained through a
balance between pressure and electrical stress in the normal stress balance (2.14),
P = ε0χ

2/H 2. An inspection of the tangential component of the momentum balance
equations (2.9) shows that a balance between the pressure and viscous stress terms
in the lower fluid provides a vertical velocity scale U = ε0χ

2H/(μ2L
2). This leads

to a horizontal length scale by balancing surface tension and electrical stresses in
(2.14), L = [γH 3/(ε0χ

2)]1/2. In these scalings, the potential scale is determined by the
maximum applied voltage χ = max [V (t)].

Application of these scalings to the equations of § 2.1 generates eight dimensionless
groups that are important for analysing this problem. The first six, the initial height
ratio (layer 1/layer 2) β , viscosity ratio η = μ1/μ2, dielectric constants εi , and
conductivities Si = Lσi/(Uε0), have been seen in previous studies. Additionally,
for the dimensionless AC electrostatic potential at the bottom substrate, we define
V (t) = 1 + AC [cos(ωt) − 1]. This provides two additional parameters. First is the
relative AC magnitude, which ranges from AC = 0 for a pure DC potential to AC = 1
for a pure AC potential. Second is the dimensionless frequency , which is the product
of the dimensional frequency with the process time scale ω = ΩT .

2.3. Evolution equations

To obtain nonlinear evolution equations for the interfacial height and charge, the
equations of § 2.1 are first non-dimensionalized by the scalings of § 2.2. Consistent with
the lubrication approximation, we consider the leading-order terms in an asymptotic
expansion of the ratio of the vertical to horizontal length scales, H/L, in the limit
H/L → 0. The subsequent non-dimensional equations can then be manipulated into
two evolution equations for the interfacial height and charge. This derivation is
similar to that shown in previous works and will be omitted here for brevity; see S. A.
Roberts (2009, in preparation) for the full derivation. The final nonlinear evolution
equations are

∂h

∂t
= −1

2
(1 + h)h′

(
2B4−(−1 + h)

∂p2

∂x

)
−1

6
(1 + h)2

(
3B ′

4 + (−2 + h)
∂2p2

∂x2

)
,(2.19)

∂q

∂t
= S1B1 − S2B2 − qh′

(
B4 + h

∂p2

∂x

)
− 1

2
(1 + h)

(
2B4 + (−1 + h)

∂p2

∂x

)
q ′

− 1

2
(1 + h)

(
2B ′

4 + (−1 + h)
∂2p2

∂x2

)
q, (2.20)

where the primes denote differentiation with respect to x. The expressions Bi and
dpi/dx are complicated and were obtained by solving the underlying equations in
Mathematica. Expressions for these constants are found in Appendix A.1.

2.4. Base state and normal mode expansion

We first consider the base state of the system, where the interface is flat and located
at z = 0, vi = 0, and all variables are functions of z only. The electrostatic potential,
governing equations and boundary conditions remain unchanged and can be solved
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in terms of the base-state charge q̄(t)

ψ̄1 =
(q̄(t) + ε2V (t))(β − z)

ε1 + βε2

, ψ̄2 =
(1 + z)βq̄(t) + (βε2 − ε1z)V (t)

ε1 + βε2

, (2.21)

where base-state quantities are denoted by an overbar.
These potentials can then be inserted into the charge evolution equation (2.17) and

integrated in time with the initial condition q̄(0) = 0, giving the expression

q̄(t) = D1 + D2 [D3 exp(−D6t) + D4 sin(ωt) − D5 cos(ωt)] , (2.22)

where D1 = (AC − 1)(S1ε2 − S2ε1)/(S1 + S2β) and the remainder of the Di are found
in Appendix A.2. Of particular interest in understanding the interfacial stability of
the system, as will be fully discussed in § 4.1, is the maximum value of the base-state
charge after a quasi-steady state has been reached (t → ∞). Removing the asymptotic
decay term of (2.22) (D3 → 0) and maximizing the remaining expression with respect
to time yield the expression

q̄0 =
(S1ε2 − S2ε1)((AC − 1)D − AC (S1 + S2β))

D(S1 + S2β)
, (2.23)

with D =
√

(S1 + S2β)2 + ω2(ε1 + βε2)2.
Additionally, the normal stress boundary condition (2.14) can be manipulated to

yield an expression for the pressure jump across the interface in the base state

p̄2 − p̄1 =
ε2(βq̄(t) − ε1V (t))2

2(ε1 + βε2)2
− ε1(q̄(t) + ε2V (t))2

ε1 + βε2)2
. (2.24)

Using these base-state results, a linear stability analysis is carried out by first
applying a normal mode expansion to the interfacial height and charge,

h(x, t) = 0 + h̃(t) exp(ikx), q(x, t) = q̄(t) + q̃(t) exp(ikx). (2.25)

Here, the variables h̃ and q̃ are perturbation variables which are small with respect
to the base state. By applying these to (2.19)–(2.20), linearizing around the base-state
values and dividing by exp(ikx), the linearized evolution equations are found to be of
the form

∂h̃

∂t
= C1

(
h̃(t)

[
−C2k

4 + k2
(
C3q̄(t)2 + C4q̄(t)V (t) + C5V (t)2

)]
+ q̃(t)k2 [−C6q̄(t) + C7V (t)]

)
, (2.26)

∂q̃

∂t
= h̃(t)

[
C1q̄(t) + C13V (t) − C1C9k

4q̄(t)

+ C1k
2
(
C11q̄(t)V (t)2 + C12q̄(t)2V (t) − C8q̄(t)3

)]
+ q̃(t)

[
−C14 + C1k

2
(
C16q̄(t)V (t) − C15q̄(t)2

)]
. (2.27)

In these equations, the constants Ci depend only on physical parameters (β , η, εi , Si ,
AC , ω) and are found in Appendix A.3.

2.5. Limiting cases

Below, we discuss some of the relevant simplifications to the model of § 2.1, and the
implications of the simplifications to the equations of § 2.3–2.4. These limits have been
used for comparison with other published results.
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2.5.1. DC electric field

A DC field is obtained in the limit AC → 0. In this case, the frequency terms
ω will naturally disappear, and the equations reduce to those of Craster & Matar
(2005). Additionally, calculations have been performed using our nonlinear evolution
equations and linear stability analysis, and the results for AC → 0 approach those of
Craster & Matar (2005).

2.5.2. Air top layer

A simpler case experimentally is when the top layer is air. This simplification
involves taking three limits, η → 0 due to the relatively low viscosity of air (compared
to a polymer melt), ε1 → 1 and S1 → 0 as air is not conductive. When these
simplifications are simultaneously applied with the limit AC → 0, the equations and
calculations match with those presented in previous works (Pease & Russel 2002;
Craster & Matar 2005).

2.5.3. Perfect dielectric layers

Correctly deriving the equations for perfect dielectric fluids (where there is no
conductivity in the bulk) is slightly less obvious than the previously described limits.
At first glance, it may appear as simple as taking the limits S1, S2 → 0. However, a
careful inspection of the nonlinear charge evolution equation (2.17) reveals that the
first two terms are not zero, allowing charge to exist at the interface. For this reason,
the interfacial charge must also be set to zero, q = 0 (Shankar & Sharma 2004).

3. Perfect dielectric analysis
We begin our analysis by considering perfect dielectric fluids discussed in § 2.5.3.

We first present a linear stability analysis and then show the results of nonlinear
simulations.

3.1. Linear stability analysis

To perform the linear stability analysis for a perfect dielectric system, the evolution
equations (2.26)–(2.27) are simplified by setting q(t) = 0. The system is then reduced
to a single evolution equation

∂h

∂t
= C1h(t)(−C2k

4 + k2C5V (t)2). (3.1)

As originally defined in § 2.2, V (t) = 1 + AC [cos(ωt) − 1]. Since this is a first-order
ordinary differential equation (ODE), the equation is analytically integrated to obtain
the expression

h(t) = E1 exp[(E2k
2 − E3k

4)t + E4k
2 sin(ωt) + E5k

2 sin(2ωt)]. (3.2)

In this equation, E1 represents the initial interface height, taken to be a small
perturbation, E2 = (1/2)(2 − 4AC + 3AC 2)C1C5 corresponds to the destabilizing
force due to the electrostatic field, E3 = C1C2 corresponds to the stabilizing surface
tension force, and E4 = 2(AC − 1)ACC1C5/ω and E5 = AC 2C1C5/(4ω) arise from
oscillatory terms due to the AC field. The expressions involving E2 and E3 represent
an exponential growth, and (E2k

2 − E3k
4) is the growth rate. It is also important to

note that in the limit of DC fields AC → 0, (3.2) reduces exactly to the growth rate
expression in Shankar & Sharma (2004).

To better understand the behaviour that AC fields bring to the problem, it is
instructive to initially study a simpler case that where the top layer is air (ε1 → 1,
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Figure 2. Behaviour of the additional AC term in the growth rate expression (3.3).

η → 0) and the bottom layer is a perfect dielectric; the full case of two perfect
dielectric liquids is discussed in the last paragraph of this section. In this simpler case
the growth rate α is

α =
(2 − 4AC + 3AC 2)(ε2 − 1)2ε2

6(1 + βε2)3
k2 − 1

3
k4. (3.3)

One unique feature of the AC field is the addition of the (2 − 4AC + 3AC 2)/2 term
in the electrostatic destabilization term of the growth rate. This term arises through
the integration of V (t)2 and is the mean square potential. Examining the behaviour
of this term, shown in figure 2, reveals that the destabilizing force of the electrostatic
field, and therefore the growth rate, is maximized at AC = 0, a DC field, and goes
through a minimum at AC = 2/3. Therefore, applying an AC field is equivalent to
applying a DC field with magnitude equal to the mean square AC potential.

Similarly, the fastest-growing wavenumber, kmax , can be found by maximizing the
growth rate. Thus,

kmax =
1

2

√
(2 − 4AC + 3AC 2)(ε2 − 1)2ε2

(1 + βε2)3
, (3.4)

αmax =
(2 − 4AC + 3AC 2)2(ε2 − 1)4ε2

2

48(1 + βε2)6
, (3.5)

where αmax is the corresponding growth rate. The cutoff wavenumber, which is the
largest unstable wavenumber, is kcutoff =

√
2kmax . Again, the appearance of the mean

square AC potential in all of these expressions causes the fastest-growing wavenumber
and growth rate to be largest at AC = 0, with AC fields producing pillars that are
slower growing and more widely spaced than those obtained by DC fields.

The remaining terms in (3.2) provide the oscillatory behaviour that is expected of an
AC field. There are two components to this term; the sin(ωt) term provides oscillations
with the same frequency as the applied field, and the sin(2ωt) term provides a response
with twice the frequency. For a DC field, both of these terms are zero, as expected.
In the pure AC limit, AC = 1, the sin(ωt) term goes away, yielding a purely 2ω
frequency response. This 2ω response is similar to that noted by Yih (1968) for a
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pure AC field. At intermediate values of AC, the behaviour is a mixture of ω and 2ω

frequencies.
Additionally, looking at the coefficients of these terms tells us about the amplitude

of oscillation. Primarily, the coefficients of both terms scale as ω−1, meaning that
the amplitude of the interface oscillations should decrease with an increase in the
frequency. This trend is reasonable because as the frequency increases, the interface
has less time to flatten under a weak electric field before the electrostatic forces again
pull the peaks towards the mask. This leads to less overall motion, or oscillation, in
the pillars.

Growth rates may also be calculated for the original case of two perfect dielectric
layers by inspecting the terms in (3.2). Even though the terms in this expression
are slightly more complicated, the AC behaviour previously discussed in this section
remains the same. For example, the fastest-growing wavenumber and growth rate for
this case are

kmax =
1

2

√
(2 − 4AC + 3AC 2)(ε2 − ε1)2ε1ε2

(ε1 + βε2)3
, (3.6)

αmax =
(2 − 4AC + 3AC 2)2(ε2 − ε1)

4ε2
1ε

2
2β

3(β + η)

48(ε1 + βε2)6
(
β4 + 4βη + 6β2η + 4β3η + η2

) , (3.7)

and again the cutoff wavenumber is kcutoff =
√

2kmax . These results are consistent with
the previous studies of Shankar & Sharma (2004).

3.2. Nonlinear simulations

Nonlinear simulations were carried out to probe the behaviour that AC fields
introduce outside the linear regime and to verify the linear stability results of § 3.1.
Nonlinear evolution equations (2.19)–(2.20) are first simplified according to the perfect
dielectric fluid assumptions (§ 2.5.3) to obtain a single evolution equation

∂h

∂t
= −1

2
(1 + h)h′ (2F1 − (−1 + h)F2) − 1

6
(1 + h)2

(
3F ′

1 + (−2 + h)F ′
2

)
, (3.8)

with

F1 = F3(β − h)2(−2(1 + β)η + h(β2 − η + (−1 + η)(2β − h)h)),
F2 = −F3(β − h)2(β2 + 3η + 4βη + h(−2β + 2η + 4βη + h − ηh)),
F3 = (ε1(ε1 − ε2)

2ε2V (t)2h′ + (ε1 + βε2 + (ε1 − ε2)h)3h′′′)
/((ε1 + βε2 + (ε1 − ε2)h)3(β4 + 2β(2 + β(3 + 2β))η + η2 + (−1 + η)h
(4(β3 + η) + h(−6β2 + 6η + 4(β + η)h + (−1 + η)h2)))),

where h = h(x, t) and V (t) = 1 + AC [cos(ωt) − 1].
This evolution equation is discretized over the solution domain using fourth-

order accurate finite-difference formulae on an evenly spaced grid. Periodic boundary
conditions are implemented at the horizontal boundaries. A van der Waals-like
repulsive force is imposed at the mask and substrate to prevent the liquid interface
from penetrating the surfaces, causing film breakup. The form of this repulsive force
is similar to that in equation (3) of Wu et al. (2005). For clarity, these force terms
have not been included in the equations presented here; the complete equations can be
found in S.A. Roberts (2009, in preparation). Time integration is implemented using
DASPK3.0 (Brenan 1996), which uses fifth-order backward differentiation formulae
with automatically adjusting time steps. For a typical simulation, the domain was
taken to be six times the fastest-growing wavelength predicted by the linear stability
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Figure 3. Sample simulation for a perfect dielectric system with β = 0.5, η = 0, ε1 = 1,
ε2 = 2.5, AC = 1 and ω = 0.005. The top panel shows the final interfacial profile. The bottom
panel shows the evolution of the top of the pillars (hmax) through the evolution process, where
the solid line is the nonlinear simulation result and the dashed line is that predicted by the
linear stability analysis from (3.2).

analysis, and between 1000 and 2000 grid points were used. Initial conditions were
typically given as a sinusoidal function with a wavelength matching that of the fastest-
growing wavelength and with an amplitude of β/1000. These conditions enabled the
fastest simulation times while maintaining solution accuracy, and were used for a
majority of the simulations. However, a representative subset of these results was
verified using random initial conditions and varying domain sizes.

Generally, nonlinear simulations yield results in qualitative agreement with linear
stability predictions. Figure 3 shows a sample result from these simulations; there
are a few key features to note. First, the initial growth matches nearly perfectly with
the predictions of the linear stability analysis (3.2), including the time required for
the interface to reach the top of the domain (ttop). Throughout the parameter space,
these simulations consistently showed good agreement with the predicted growth rate
(3.3) within the linear regime, where h 	 β . Second, the top panel shows exactly six
pillars in the domain, corresponding to the domain size set by six times the fastest-
growing wavelength from linear stability analysis. This result is typical and shows that
linear stability analysis accurately predicts the pillar spacing in the nonlinear regime.
Third, the time scale of the oscillatory response in the bottom panel is exactly twice
the time scale of the electrostatic field, corresponding to the 2ω response predicted by
the linear stability analysis for AC = 1.

After the initial growth phase, there is a transient period where the distance the
pillar tops fall with each AC period decreases, as seen in the first few troughs in the
bottom panel of figure 3. A quasi-steady-state period begins once these transients have
subsided. If we define the overall pillar height as the difference between the pillar peak
and trough, then we can define the quasi-steady-state height oscillation (QSSHO) as
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Figure 4. QSSHO vs. the height ratio (β) for a perfect dielectric with ε1 = 1, ε2 = 2.5, η = 0
and AC = 1. Inset figures depict representative interfacial profiles for three points.

the difference between the maximum and minimum overall pillar heights once the
quasi-steady-state period has been reached. General trends for the QSSHO are shown
in figure 4; each curve in this figure is for a given value of ω/ttop . This quantity ttop

has been found to be an important time scale for correlating simulation results. The
first key result from this plot is that the overall QSSHO decreases as ω/ttop decreases.
This result is logical, since with a lower frequency, the pillars experience a longer time
each period with a weak electric field. Therefore, the pillars have more time to relax
towards the base state in each period of the AC cycle. This yields larger amplitude
oscillations. Secondly, there are three distinct zones of height ratio variance in this
plot. At low height ratios, β < 2.5, the QSSHO increases with the height ratio. In this
regime, the pillars consistently reach the top mask and increasing β gives the pillars
more room to oscillate. Near β = 3, there is a peak in the QSSHO, corresponding to
the point where the pillars are just reaching the top mask. Beyond β = 3, there is a
sharp decrease which levels out to a nearly constant value. In this region, pillars do
not reach the top mask and their heights remain relatively constant with the height
ratio, leading to the QSSHO behaving similarly. In general, the pillar shape under
AC fields is similar to that under DC fields, except for a thinning of the pillars, a
phenomenon that is discussed in more detail in § 4.2.

While AC fields may not be used to directly make smaller diameter pillars than the
corresponding DC field, they do allow a degree of control over the overall spacing
of the pillars. The QSSHO may also be controlled by adjusting the frequency of the
AC field, with higher frequencies leading to smaller oscillations in the pillar heights.
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This behaviour may be important in dynamic applications, where one desires precise
control of periodic changes in the interface topography.

4. Leaky dielectric analysis
Now that the basic interactions of AC electric fields with perfect dielectric fluids

have been explored, we move on to the more complicated and more physically
appropriate leaky dielectric model. We begin with a stability analysis using Floquet
theory, then present the results of nonlinear simulations.

4.1. Floquet analysis

For the leaky dielectric model, the full linearized equations (2.26)–(2.27) must be
solved for the growth rate. Perfect dielectrics yield a single first-order ODE with a
non-constant coefficient, which can be solved analytically. Leaky dielectrics, however,
yield two coupled first-order ODEs with non-constant coefficients which cannot be
integrated analytically; instead, the techniques of Floquet theory must be utilized.

First, we assume that the perturbation quantities can be represented by the Floquet
expansions

h̃(t) =
∑

n

ĥn exp [(α + i(n + γ )ω) t] , q̃(t) =
∑

n

q̂n exp [(α + i(n + γ )ω) t] , (4.1)

where n is the integer-frequency multiplier γ is the Floquet harmonic parameter
(where 0 � γ � 1/2; γ = 0 corresponds to a harmonic response and γ = 1/2
is a subharmonic response), ω is the frequency of the AC field and α is the real-
valued growth rate, as previously discussed. If we perform this Floquet expansion
and substitute in the expressions for q̄(x, t) and V (t), we can divide by exp(αt) and
collect terms in the same power of exp(inωt) to obtain

ĥn

[(
G0

1 − α − i(n + γ )ω
)
ei(n+γ )ωt + G1

1e
i(n+γ+1)ωt + G

1†
1 ei(n+γ −1)ωt

+ G2
1e

i(n+γ+2)ωt + G
2†
1 ei(n+γ −2)ωt + G3

1e
i(n+γ+3)ωt + G

3†
1 ei(n+γ −3)ωt

]
q̂n

[
G0

2e
i(n+γ )ωt + G1

2e
i(n+γ+1)ωt + G

1†
2 ei(n+γ −1)ωt

+ G2
2e

i(n+γ+2)ωt + G
2†
2 ei(n+γ −2)ωt + G3

2e
i(n+γ+3)ωt + G

3†
2 ei(n+γ −3)ωt

]
= 0, (4.2)

ĥn

[
G0

3e
i(n+γ )ωt + G1

3e
i(n+γ+1)ωt + G

1†
3 ei(n+γ −1)ωt

+ G2
3e

i(n+γ+2)ωt + G
2†
3 ei(n+γ −2)ωt + G3

3e
i(n+γ+3)ωt + G

3†
3 ei(n+γ −3)ωt

]
q̂n

[
(G0

4 − α − i(n + γ )ω)ei(n+γ )ωt + G1
4e

i(n+γ+1)ωt + G
1†
4 ei(n+γ −1)ωt

+ G2
4e

i(n+γ+2)ωt + G
2†
4 ei(n+γ −2)ωt + G3

4e
i(n+γ+3)ωt + G

3†
4 ei(n+γ −3)ωt

]
= 0, (4.3)

where the G
j
i are found in Appendix A.4 and † represents the complex conjugate. If

we now let −N � n � N and truncate all terms exp(imωt) where |m| >N , then we
can form a 4N +2 by 4N +2 eigensystem Ax = λx, where the 4N +2 eigenvalues are
λ = α + i(n + γ )ω and the eigenvectors are ĥn and q̂n, which are each associated with
a corresponding power of exp(imωt). This eigensystem is solved using the standard
eigensystem solution capabilities of Matlab. In these calculations, N was increased
until sufficient resolution was achieved. The Floquet parameter γ was always found
to be zero. The largest real eigenvalue is chosen as the growth rate, using a method
similar to that of González et al. (2003).
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Figure 5. Effect of the AC parameter on the growth rates and wavenumbers for leaky and
perfect dielectrics under various frequencies; (− − −) ω = 101, (· · ·) ω = 102.5, (− · −) ω = 104

and (—–) perfect dielectric. All plots are for β = 1, η = 0, ε1 = 1, ε2 = 4, S1 = 0 and S2 = 103.

Allowing even minuscule amounts of charge accumulation at the interface (Si > 0)
yields a drastic increase in the fastest-growing growth rates and a marked increase in
the fastest-growing wavenumber, a fact noted by Pease & Russel (2002). This charge
will tend to accumulate at the top of the pillars, causing the the electric field to have a
greater effect on the pillar tips, effectively pulling them towards the mask with greater
speed than would happen with a uniform charge distribution. AC fields, however,
generally have a similar effect in leaky dielectrics as they do in perfect dielectrics,
namely that the growth rates and wavenumbers are lower in the AC case than in
the DC case. Specific examples of this behaviour are illustrated in figure 5. In the
limit of a DC field (AC = 0), there are two possible values for the growth rate or
wavenumber, those for a perfect dielectric or a leaky dielectric, as the frequency has no
influence in DC fields. As the AC parameter is increased at low frequencies, the leaky
dielectric results behave similar to those of the perfect dielectric, with wavenumbers
and growth rates first decreasing, then increasing past AC = 2/3. However, increasing
the frequency in situations with a high value of AC leads to suppression of interfacial
charge, as discussed in the next paragraph, with the growth rate and wavenumber
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Figure 6. Effect of frequency on base-state charge and Floquet results for varying lower layer
conductivity; (− − −) S2 = 103, (· · ·) S2 = 104, (− · −) S2 = 105 and (—–) perfect dielectric
S2 = 0. All plots are for β = 1, η = 0, AC = 1, ε1 = 1, ε2 = 4 and S1 = 0.

values eventually reaching those of the perfect dielectric fluid at AC = 1 and high
frequencies.

The most significant impact that AC fields have is the effect of the AC field
frequency on the base-state charge, as highlighted in figure 6. A careful inspection of
(2.23) shows that there are two distinct regimes of behaviour; one where S1 + S2 
 ω

and one where S1 + S2 	 ω. In the first case, where the dimensionless conductivity
is much larger than the forcing frequency, the base-state charge is independent of
frequency, a behaviour shown in the low-frequency region of figure 6(a). As the
frequency increases, however, the relatively low conductivity of the fluid inhibits the
movement of charge within the medium, as the oscillation time scale (1/ω) is much
less than the time scale for charge transport (1/S2), effectively making the fluid a
perfect dielectric. In this range of high frequency, the maximum base-state charge
scales as ω−1, also shown in figure 6(a).

The impact of this base-state charge behaviour can be easily seen in the critical
wavenumbers and growth rates shown in figure 6(b–d ). As the frequency approaches
the value of the conductivity, the critical values begin to drop drastically. These values
eventually saturate exactly at their perfect dielectric values as the frequency continues
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Figure 7. Growth rate curves showing dual-hump behaviour for varying frequency; (—–)
ω = 1 × 102, (− − −) ω = 1.5 × 102 and (− · −) ω = 5 × 102. Here, AC = 1, β = 0.1, η = 0,
ε1 = 1, ε2 = 4, S1 = 0 and S2 = 103.

to increase. These results support the previous statement that if the frequency is greater
than the conductivity, the charges cannot move to the interface quickly enough, and
therefore the leaky dielectric fluid now acts as a perfect dielectric. Although figure
6 shows results for the case where the bottom layer has a larger dielectric constant
and conductivity, the same generic behaviour is observed if either one or both of
these quantities is smaller in the bottom layer. We emphasize that the details of
the transition from leaky dielectric behaviour to perfect dielectric behaviour shown
in figure 6 could not have been determined without carrying out a careful Floquet
analysis as we have done. Unlike the perfect dielectric case considered in § 3, all of
the temporal modes in the linear stability analysis couple to one another in leaky
dielectric fluids when AC fields are present.

At low height ratios (β � 0.1), we have noticed a particularly interesting behaviour,
the appearance of dual peaks, or local maxima, in the growth rate curve. This
behaviour, as illustrated in figure 7, is seen exclusively in leaky dielectric materials
under AC fields and only at low height ratios (β � 0.1). At higher frequencies
the higher-wavenumber peak is completely stable (α < 0), and only a single peak is
unstable. For typical parameter values, when there is only one peak in the growth rate
curve, the fastest-growing wavenumber is easy to identify. However, when there are
similarly sized peaks at two wavenumbers, one might expect a competition in growth
between the two peaks, and it is not necessarily clear which wavenumber dominates.
In § 4.2, we discuss the results of nonlinear simulations to verify the wavenumber that
ultimately grows and survives.

The results of this section are significant, as they provide two mechanisms to
exert further control over the wavenumbers, and therefore pillar spacings, that
are achievable using EHD instabilities; the relative AC field contribution and the
frequency of that field. Using the example shown in figure 5, only two wavenumbers
are achievable with a DC field, those for a leaky dielectric and a perfect dielectric.
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Figure 8. Evolution of a single pillar profile for a DC field (light grey) and after the AC field
is applied (dark grey). Constants are ω = 105, β = 0.25, η = 0, ε1 = 1, ε2 = 4, S1 = 0 and
S2 = 108.

However, by manipulating the AC parameter and frequency, one can achieve a range
of wavenumbers without changing physical parameters such as the height ratio,
viscosity ratio or overall field strength. While it is known that AC fields suppress
charge accumulation (Devitt & Melcher 1965; Reynolds 1965), the effect of that
suppression on the fastest-growing wavenumbers was previously unknown.

4.2. Nonlinear simulations

Nonlinear evolution equations (2.19)–(2.20) were solved using the same finite-
difference scheme presented in § 3.2. The nonlinear simulations agreed with the
predictions of the Floquet analysis in terms of growth rates, wavenumbers and
frequency response. For brevity, numerical comparisons will not be shown here, as
the results are similar to those of figure 3. We will, however, discuss simulation
results investigating the low-height-ratio behaviour of figure 7, along with noting two
interesting features discovered during the course of the simulations which highlight
the additional control mechanisms introduced by AC fields.

As discussed in § 4.1 and illustrated in figure 7, Floquet theory predicts a
competition between two wavenumbers to be the fastest-growing at very low height
ratios. Nonlinear simulations in these situations verify this behaviour; the dominant
wavelength seen during the initial growth phase is between the two wavenumbers
corresponding to the two peaks from figure 7. Setting the horizontal simulation
domain to be consistent with either one wavenumber or the other still yields pillars
with wavenumbers between the two predicted wavenumbers. As soon as the frequency
is increased enough for linear theory to predict the second hump falling below α = 0
(figure 7, the bottom curve), the simulation results revert to those consistent with the
one hump remaining unstable, verifying all aspects of this behaviour predicted by the
linear theory.

As a primary motivation of this work is gaining a better understanding of how to
control the size and shape of the pillars, we found that AC fields provide an additional
level of control over the width of the pillars, a feature illustrated in figure 8. Under DC
fields, patterns grow at a certain wavelength and reach a steady-state configuration
with a certain pillar width, maximum pillar height and spacing between pillars. If,
after the pillars have reached this steady state, the DC field is turned into an AC field
(the AC parameter switched from zero to unity; a wide range of frequencies may be
used), the interface will begin to oscillate and the pillar peaks will begin to thin. This
phenomenon is due to the transient nature of the AC field. As the effective voltage
decreases during each AC period, so does the force on the interface, allowing the tip
of the pillar to thin and then drop away from the mask. When the frequency of the
field is high enough, the pillar appears trapped in a thinner state, as the period of the
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Figure 9. Evolution of pillar peak splitting for a system with AC = 1, ω = 105, β = 0.25,
η = 0, ε1 = 1, ε2 = 4, S1 = 0 and S2 = 108. The original peak in the first panel is shown as a
dashed line in subsequent panels.

AC field is much shorter than the time required for the pillar to spread out at the
maximum pillar height. Larger frequencies favour smaller height oscillations, similar
to the behaviour shown in figure 4.

In the case of figure 8, the final AC pillar diameter is approximately one-third that
of the DC case; this is further discussed in § 5 and quantified in figure 10(a). For all
parameter values observed (in both perfect and leaky dielectric systems), the ratio of
the pillar diameter to the pillar spacing (fastest-growing wavelength) decreases when
a DC field is switched to AC after the initial growth is complete. What is interesting
about using a DC field for growth before switching to an AC field is that growing
with the DC field locks in the pillar spacing at a smaller wavelength than is achievable
using a comparable AC field, but the AC field can still subsequently thin the pillars,
decreasing the width-to-spacing ratio. It is worth noting that the same phenomenon,
however, does not occur when switching an AC field to a DC field, as this is a purely
transient effect of the AC field.

Finally, a phenomenon we have come to call “peak splitting” has been observed
for certain parameter values in leaky dielectric systems, and is illustrated in figure 9.
At the top of the original peak, we see the formation of three subpeaks. While these
peaks are dynamic features and do not stretch as deeply as the primary pillars do,
they do show that it is possible to obtain feature sizes that are smaller than the typical
DC pillars. This phenomenon generally occurs at low height ratios. Since a repulsive
force is present between the fluid and the mask, the pillar tops reach an equilibrium
distance away from the mask if a DC field is used. When AC fields are applied, the
oscillation of the interface causes the average pillar height to be lower than that for
a DC field. The space that appears above the pillars may be able to induce another
instability on shorter time and length scales, which is manifested as these split peaks.
This behaviour is purely a transient phenomenon and would not be seen under DC
fields. We have used the Floquet analysis of the previous section to show qualitative,
order-of-magnitude agreement with this hypothesis. Using figure 9 as an example,
the small peaks shown in the third panel correspond to a wavelength of 0.55, while
a linear stability analysis using the top of the flat peak as the initial height gives a
predicted wavelength of 0.48.

5. Time-varying DC fields
While the previous sections of the paper were dedicated to the effects that time-

periodic AC electric fields have on the control of EHD pillar formation, novel effects
are also seen with non-periodic variation of the electric field. These time-varying DC



AC electrohydrodynamic instabilities in thin liquid films 273

100 101 102
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
P

ea
k
 w

id
th

 c
h
an

g
e 

ra
ti

o

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) AC fields.

Re-scaled frequency (ω/ttop)
0.8 1.0 1.2 1.4 1.6 1.8 2.0

Voltage change (V2/V1)

(b) DC fields.

Figure 10. Thinning and thickening of pillars formed by initially using a DC field then
switching to (a) an AC field or (b) a DC field of different amplitude after the pillar structure
has formed. The y-axis is the ratio of the width of the pillars under the original DC field to
the width after the field has changed. The width of each pillar is measured at five percent
of the total pillar height below the top of the pillar. In the x-axis, V1 is the original voltage
used during the growth and for calculation of ttop , while V2 is the voltage after the change is
made. For (a), the minimum pillar width ratio (thinnest pillar) is reported. Data are plotted
for various height ratios; (—–×—–) β = 0.3, (- - -�- - -) β = 0.5 and (- . -�- . -) β = 1.
Calculations are for a perfect dielectric bottom layer with ε2 = 4 and an air top layer.

fields have not been explored in prior works, so we report some of our observations
here.

The thinning of pillar peaks by switching to an AC field after pillar formation was
discussed in § 4.2 and illustrated in figure 8. Figure 10(a) shows that the amount of
thinning which can be achieved through this switch has a slight frequency dependence.
However, the overall range of thinning is limited to approximately one-third of the
original pillar width. However, if instead of switching to an AC field after the pillars
have formed, the DC voltage is simply changed to a different value, a similar effect
is seen. When the voltage is decreased the pillar tip thins, and when the voltage is
increased the tip thickens, a result shown in figure 10(b). The more the voltage deviates
from the original voltage and the lower the height ratio, the stronger the thinning or
thickening effect is. However, if the voltage is decreased below approximately 70 %
of the original voltage, the pillars decay back to a flat interface rather than thinning.
Thus, time-varying DC fields can be used to thin or thicken pillars, whereas switching
from a DC field to an AC field can only thin pillars. However, the latter strategy
produces more thinning than the former strategy as can be seen by comparing figures
10(a) and 10(b).

The above discussion applies to situations where the voltage switch (from DC to
AC or another DC value) occurs after the pillars have fully formed. However, if this
switch occurs before the pillars fully form, differences may appear. When the switch
occurs late in the growth process, and the pillars are at least 50 % of their final height,
no change is seen; the dynamics are the same as if the switch occurred later, forming
pillars with a spacing consistent with the original voltage. However, if the switch
occurs even earlier in the growth process, the pillars decay down to a flat interface
and then later re-grow, but this time with a spacing consistent with the linear stability
analysis predictions based solely on the final voltage.

Additionally, instead of making a step change to the voltage, a linear ramp from
the initial voltage to the final voltage can be applied. This can also be done with a
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ramp from a DC to an AC field. In these instances, the observed behaviour is highly
dependent on the speed at which the ramp occurs. For relatively fast ramps, where
the ramp length is similar to ttop for the original voltage, the behaviour is similar to
the case where a step switch had been made late in the growth. However, if the time
over which the ramp occurs lengthens, the observed behaviour is more complex, with
pillar spacings between those predicted by the linear stability analysis for each of the
two voltages. In all cases of ramps, the growth occurs much more slowly than if only
a single voltage had been used.

6. Conclusions
We have presented a theoretical study of how AC electric fields may be used to

control the formation of pillar-like structures in thin liquid films. Linear stability
analysis for the case of perfect dielectric fluids shows that the influence of an AC
field can be understood by considering an effective DC field. The use of an AC field
shifts the EHD instability to longer wavelengths and slows its growth. Nonlinear
simulations yield results consistent with the linear stability analysis, and reveal that
the film height settles into a quasi-steady state where the film height oscillates with
a frequency which, in general, is a mixture of the imposed oscillation frequency
and its first harmonic. For leaky dielectric fluids, Floquet theory must be applied
to obtain linear stability results. It is found that the frequency of the electric field
has a strong effect on the accumulation of interfacial charge, and this in turn can
be used to further tune the instability growth rate and wavenumber. In addition
to confirming the linear stability results, the nonlinear simulations demonstrate how
thinner pillars can be created by switching on an AC field after a DC field is applied.
The creation of smaller-scale structures on top of the original peaks (peak splitting) is
also observed for some parameter values, and is likely the result of a local instability.
Additional dynamic phenomena were observed for various cases of time-varying DC
fields, resulting in dramatic thinning or thickening of pillar widths.

As noted in the introduction, there are a number of practical applications where
fine control over surface topography is required. While this need has motivated a
number of studies involving DC fields, the present study suggests that AC fields may
be fruitfully applied to further tailor topographical features. An important next step
in this line of inquiry will be to extend the approach used here to two dimensions in
order to explore how the oscillation amplitude and frequency influence the structure
and symmetry of topographical patterns. Related work on the Faraday instability
is expected to provide guidance in that endeavour, and the results may contribute
both fundamental and practical insight into pattern formation in spatially extended
dynamical systems.

This material is based upon work supported by the Department of Energy
under Award Number DE-FG02-07ER46415. We are grateful for resources from
the University of Minnesota Supercomputing Institute.

Appendix. Equation details
A.1. Nonlinear evolution equation details

Here, we present expressions for the constants found in (2.19)–(2.20):

B1 = − (1 + h)q + ε2V (t)

ε1 + βε2 + (ε1 − ε2)h
,
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B2 =
(β − h)q − ε1V (t)

ε1 + βε2 + (ε1 − ε2)h
,

B3 = ((1 + h)(−(β − h)(3β2 + 4β3 + η − 3(β2 − η)h + 3(−1 + η)h2

+ (−1 + η)h3)qB ′
1 − B1(ε1(1 + h)(2β2(1 + β) + (−β2 + η)h + 2(−1 + η)h2

+ (−1 + η)h3)B ′
1 − (3β2 + 4β3 + η − 3(β2 − η)h + 3(−1 + η)h2

+ (−1 + η)h3)qh′) + (1 + h)(2β2(1 + β) + (−β2 + η)h + 2(−1 + η)h2

+ (−1 + η)h3)(ε2B2B
′
2 − h′′′)))/(β4 + 4βη + 6β2η + 4β3η + η2

+ 4(−1 + η)(β3 + η)h − 6(β2 − η)(−1 + η)h2

+ 4(−1 + η)(β + η)h3 + (−1 + η)2h4),

B4 = ((β − h)((β−h)(β3 + 4η + 3βη−3(β2−η)h − 3β(−1 + η)h2 + (−1 + η)h3)qB ′
1

+ B1(ε1(β − h)(−2(1 + β)η + (β2 − η)h + 2β(−1 + η)h2 − (−1 + η)h3)B ′
1

− (β3 + 4η + 3βη − 3(β2 − η)h − 3β(−1 + η)h2 + (−1 + η)h3)qh′)

− (β − h)(−2(1 + β)η + (β2 − η)h + 2β(−1 + η)h2 − (−1 +η)h3)(ε2B2B
′
2 − h′′′)))

/(β4 + 4βη + 6β2η + 4β3η + η2 + 4(−1 + η)(β3 + η)h − 6(β2 − η)(−1 + η)h2

+ 4(−1 + η)(β + η)h3 + (−1 + η)2h4),

dp1

dx
= (η(1 + h)(6(1 + β)(β − h)2qB ′

1 + B1(ε1(1 + h)(4β + 3β2 + η − 2(2 + β − η)h

+ (−1 + η)h2)B ′
1 − 6(1 + β)(β − h)qh′) − (1 + h)(4β + 3β2

+ η − 2(2 + β − η)h + (−1 + η)h2)(ε2B2B
′
2 − h′′′)))/(β4 + 4βη + 6β2η

+ 4β3η + η2 + 4(−1 + η)(β3 + η)h − 6(β2 − η)(−1 + η)h2

+ 4(−1 + η)(β + η)h3 + (−1 + η)2h4),

dp2

dx
= ((β − h)(6(1 + β)η(β − h)(1 + h)qB ′

1

− B1(ε1(β − h)(β2 + 3η + 4βη + 2(η + β(−1 + 2η))h − (−1 + η)h2)B ′
1

+ 6(1 + β)η(1 + h)qh′) + (β − h)(β2 + 3η + 4βη + 2(η + β(−1 + 2η))h

− (−1 + η)h2)(ε2B2B
′
2 − h′′′)))/(β4 + 4βη + 6β2η + 4β3η + η2

+ 4(−1 + η)(β3 + η)h − 6(β2 − η)(−1 + η)h2

+ 4(−1 + η)(β + η)h3 + (−1 + η)2h4).

In all of these expressions, primes (′) denote differentiation with respect to x.

A.2. Base-state charge details

Below is the full expression for the base-state charge expression:

q̄(t) = D1 + D2 [D3 exp(−D6t) + D4 sin(ωt) − D5 cos(ωt)] ,

D1 =
(AC − 1)(S1ε2 − S2ε2)

S1 + S2β
,

D2 =
1

(S1 + S2β)2 + ω2(ε1 + ε2β)2
,

D3 =
(S1ε2 − S2ε1)((S1 + S2β)2 + (1 − AC )ω2(ε1 + ε2β)2)

S1 + S2β
,

D4 = AC (S2ε1 − S1ε2)(ε1 + ε2β)ω),
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D5 = −AC (S2ε1 − S1ε2)(S1 + S2β),

D6 =
S1 + S2β

ε1 + ε2β
.

A.3. Linear evolution equation details

Below are the constants from the linear evolution equations (2.26)–(2.27):

C1 =
β2

6(ε1 + βε2)3(β4 + 4βη + 6β2η + 4β3η + η2)
,

C2 = 2β(ε1 + βε2)
3(β + η),

C3 = −β4ε1ε2 − 3β5ε2
2 − 3ε2

1η − βε1ε2η + β3ε2(3ε2η + ε1(7 + 2η))

+ β2ε1(3ε1 + ε2(2 + 7η)),

C4 = (1 + β)ε1ε2(−β2(ε1 − 4ε2) + 3β3ε2 − 3ε1η + β(−4ε1 + ε2)η),

C5 = 2ε1β(ε1 − ε2)
2ε2(β + η),

C6 = (ε1 + βε2)β(5β3ε2 − 5ε1η + β2(3ε1 + 2ε2η) − β(2ε1 + 3ε2η)),

C7 = 2β(1 + β)ε1ε2(ε1 + βε2)(β + η),

C8 = 3
(
−4β4ε1ε2 + β5ε1ε2 + 2β6ε2

2 − 2ε2
1η − βε1ε2η + 4β2ε1ε2η

+β3
(
−2ε2

1 + ε1ε2(−1 + η) + 2ε2
2η

))
/β,

C9 = 3(ε1 + βε2)
3(β2 − η),

C10 =
(1 + β)(S2ε1 − S1ε2)

(ε1 + βε2)2

C11 = 3ε1ε2(ε1 − ε2)
2(β2 − η),

C12 = 6(1 + β)2ε1ε2(β
3ε2 + ε1η)/β,

C13 =
(S2ε1 − S1ε2)(ε2 − ε1)

(ε1 + βε2)2
,

C14 =
S1 + βS2

ε1 + βε2

,

C15 = 3(ε1 + βε2)(2β3ε1 + 3β4ε2 + 3ε1η + 2βε2η − β2(ε1 + ηε2)),

C16 = 3(1 + β)ε1ε2(ε1 + βε2)(β
2 − η).

A.4. Floquet matrix details

Below are the constants from the Floquet evolution equation expansions (4.2)–(4.3):

G0
1 = 1

2
C1

(
(2 − 4AC + 3AC 2)C5 − C4(2(−1 + AC )D1 + ACD2D5)

+C3

(
2D2

1 + D2
2

(
D2

4 + D2
5

)))
k2 − C1C2k

4,

G1
1 = − 1

2
C1(2AC 2C5 + (C4 + 2C3D1)D2(iD4 + D5)

− AC (2C5 + C4(D1 + iD2D4 + D2D5)))k
2,

G2
1 = 1

4
C1

(
AC 2C5 + ACC4D2(−iD4 − D5) − C3D

2
2(D4 − iD5)

2
)
k2,

G3
1 = 0,

G0
2 = −C1((−1 + AC )C7 + C6D1)k

2,

G1
2 = 1

2
C1(ACC7 + C6D2(iD4 + D5))k

2,

G2
2 = 0,
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G3
2 = 0,

G0
3 = C13 − ACC13 + C1D1 + 1

2
C1

(
C11

(
(2 − 4AC + 3AC 2)D1

+ 2(−1 + AC )ACD2D5) − C8D1

(
2D2

1 + 3D2
2

(
D2

4 + D2
5

))
− C12(2(−1 + AC )D2

1

+ 2ACD1D2D5 + (−1 + AC )D2
2

(
D2

4 + D2
5

) ))
k2 − C1C9D1k

4,

G1
3 = 1

8
(4ACC13 − 4C1D2(iD4 + D5)) + 1

8
C1

(
−AC 2C11(8D1 + 5iD2D4 + 7D2D5)

+ D2(iD4 + D5)
(
−4C11 − 8C12D1 + 3C8

(
4D2

1 + D2
2

(
D2

4 + D2
5

)))
+ AC (8C11(D1 + D2(iD4 + D5))

+ C12

(
4D2

1 + 8D1D2(iD4 + D5) + D2
2

(
D2

4 + 2iD4D5 + 3D2
5

))))
k2

+ 1
2
C1C9D2(iD4 + D5)k

4,

G2
3 = 1

4
C1

(
−(C12 − 3C8D1)D

2
2(D4 − iD5)

2 + AC 2C11(D1 + 2D2(iD4 + D5))

− iACD2(D4 − iD5)(2C11 + C12(2D1 + D2(iD4 + D5)))
)
k2,

G3
3 = − 1

8
iC1D2(AC 2C11 + ACC12D2(−iD4 − D5) + C8D

2
2(D4 − iD5)

2)(D4 − iD5)k
2,

G0
4 = −C14 − 1

2
C1(C16(2(−1 + AC )D1 + ACD2D5) + C15

(
2D2

1 + D2
2

(
D2

4 + D2
5

)))
k2,

G1
4 = 1

2
C1(−i(C16 − 2C15D1)D2(D4 − iD5) + ACC16(D1 + D2(iD4 + D5)))k

2,

G2
4 = 1

4
C1D2(−iACC16 + C15D2(D4 − iD5))(D4 − iD5)k

2,

G3
4 = 0.
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